-
GRADUATE STUDIES
- • STUDYING AT MANUTECH SLEIGHT
-
MSc in Optics, Image, Vision, Multimedia (OIVM)
-
iPSRS - Intelligent Photonics for Security, Reliability, Sustainability and Safety
- PSRS - Partner universities
- RADMEP - Radiation and its Effects on MicroElectronics and Photonics Technologies
- COSI - Computational Colour and Spectral Imaging
- IMLEX - Imaging & Light in Extended Reality
- AIMA - Advanced Imaging & Material Appearance
- PE - Photonics Engineering
-
iPSRS - Intelligent Photonics for Security, Reliability, Sustainability and Safety
- MSc in Computer Science
- MSc in Health Engineering
- Engineering schools' research tracks
- Doctoral studies
- Training through research
- Opportunities
- Admission and aid
- OPTICA and SPIE Student Chapters
-
RESEARCH & INNOVATION
-
SCIENTIFIC EVENTS
- News and about
-
The SLEIGHT Science Events
- SSE #14 - Metallic surfaces: texturing, functionalization, appearance"
- SSE #13 - SLEIGHT in 2025
- SSE #12 - Imaging in Manutech-SLEIGHT
- SSE #11 - SLEIGHT in 2024
- SSE #10 - Sustainable Surface Engineering
- SSE #09 - SLEIGHT in 2023
- SSE #08 - Photonics for Health
- SSE #07 - SLEIGHT in 2022
- SSE #06 - Machine Learning
- SSE #05 - SLEIGHT in 2021
- SSE #03 - SLEIGHT in 2020
- SSE #02 - Material Appearance
- SSE #01 - Topics and stakeholders
- Manutech-SLEIGHT Awards
- Scientific conferences
- Events in partnership with Manutech-SLEIGHT
- CAMPUS LIFE
- ABOUT US
- NEWSLETTER
You are here : EUR MANUTECH SLEIGHT > SLEIGHT's research projects
-
Partager cette page
Donata IANDOLO
A LOOK AT DONATA'S BACKGROUND
Donata obtained her bachelor's and master's degrees with a specialisation in Industrial Biotechnologies at the Federico II University in Naples, Italy. She did her PhD studies in the same University and obtained her PhD cum laude in 2010. She had the opportunity to work in various countries - Italy, Sweden, Singapore, the UK - before choosing France and research at the SAINBIOSE Laboratory.
DONATA'S MOTIVATION FOR SCIENTIFIC RESEARCH
The MonBone project's objective is to create new tools towards functional and effective in vitro models that can integrate and hopefully replace the use of animal models. The sensors developed during the project will bring new knowledge on the secretion of specific selected markers. This will increase our knowledge of the differentiation process of stem cells into bone forming cells. Also, this new technology brings together different partners with the potential of leading towards technological breakthroughs.